Convergence of approximations to the primal problem in plasticity under conditions of minimal regularity
نویسندگان
چکیده
This work considers semi-and fully discrete approximations to the primal problem in elastoplas-ticity. The unknowns are displacement and internal variables, and the problem takes the form of an evolution variational inequality. Strong convergence of time-discrete, as well as spatially and fully discrete approximations, is established without making any assumptions of regularity over and above those established in the proof of well-posedness of this problem.
منابع مشابه
Existence and Iterative Approximations of Solution for Generalized Yosida Approximation Operator
In this paper, we introduce and study a generalized Yosida approximation operator associated to H(·, ·)-co-accretive operator and discuss some of its properties. Using the concept of graph convergence and resolvent operator, we establish the convergence for generalized Yosida approximation operator. Also, we show an equivalence between graph convergence for H(·, ·)-co-accretive operator and gen...
متن کاملConvergence Analysis of Discrete Approximations of Problems in Hardening Plasticity
The initial boundary value problem of quasistatic elastoplasticity is considered here, as a vari-ational inequality and equation in the displacement and stress. A variational inequality for the stress only may be obtained by eliminating the displacement. Semidiscrete approximations of the stress problem and fully discrete nite element approximations of the full problem are considered, under ass...
متن کاملPrimal-Dual Extragradient Methods for Nonlinear Nonsmooth PDE-Constrained Optimization
We study the extension of the Chambolle–Pock primal-dual algorithm to nonsmooth optimization problems involving nonlinear operators between function spaces. Local convergence is shown under technical conditions including metric regularity of the corresponding primal-dual optimality conditions. We also show convergence for a Nesterov-type accelerated variant provided one part of the functional i...
متن کاملElastic/plastic Buckling Analysis of Skew Thin Plates based on Incremental and Deformation Theories of Plasticity using Generalized Differential Quadrature Method
Abstract In this study, generalized differential quadrature analysis of elastic/plastic buckling of skew thin plates is presented. The governing equations are derived for the first time based on the incremental and deformation theories of plasticity and classical plate theory (CPT). The elastic/plastic behavior of plates is described by the Ramberg-Osgood model. The ranges of plate geometries...
متن کاملA Class of Active-Set Newton Methods for Mixed ComplementarityProblems
Based on the identification of indices active at a solution of the mixed complementarity problem (MCP), we propose a class of Newton methods for which local superlinear convergence holds under extremely mild assumptions. In particular, the error bound condition needed for the identification procedure and the nondegeneracy condition needed for the convergence of the resulting Newton method are i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 87 شماره
صفحات -
تاریخ انتشار 2000